The Cellular Concept Unit 3

3.5 Interference and System Capacity

- Sources of interference
 - another mobile in the same cell
 - a call in progress in the neighboring cell
 - other base stations operating in the same frequency band
 - noncellular system leaks energy into the cellular frequency band
- Two major cellular interference
 - co-channel interference
 - adjacent channel interference

3.5.1 Co-channel Interference and System Capacity

- Frequency reuse there are several cells that use the same set of frequencies
 - co-channel cells
 - co-channel interference
- To reduce co-channel interference, co-channel cell must be separated by a minimum distance.

- When the size of the cell is approximately the same
 - co-channel interference is independent of the transmitted power
 - co-channel interference is a function of
 - *R*: Radius of the cell
 - *D*: distance to the center of the nearest co-channel cell
- Increasing the ratio *Q*=*D*/*R*, the interference is reduced.
- *Q* is called the co-channel reuse ratio

• For a hexagonal geometry

$$Q = \frac{D}{R} = \sqrt{3N}$$

- A small value of Q provides large capacity
- A large value of Q improves the transmission quality smaller level of co-channel interference

	Cluster Size (N)	Co-channel Reuse Ratio(Q)
i = 1, j = 1	3	3
i = 1, j = 2	7	4.58
i = 2, j = 2	12	6
i = 1, j = 3	13	6.24

Table 2.1 Co-channel Reuse Ratio for Some Values of N

3

Trunking and Grade of Service

- Erlangs: One Erlangs represents the amount of traffic density carried by a channel that is completely occupied.
 - Ex: A radio channel that is occupied for 30 minutes during an hour carries 0.5 Erlangs of traffic.
- Grade of Service (GOS): The likelihood that a call is blocked.

Trunking and Grade of Service

• Each user generates a traffic intensity of Erlangs given by

$$A_u = \mu H$$

H: average duration of a call.

L: average number of call requests per unit time

- For a system containing U users and an unspecified number of channels, the total offered traffic intensity A, is given by $A = UA_{\mu}$
- For *C* channel trunking system, the traffic intensity *A_c*, is given as

$$A_u \qquad \qquad A_c = UA_u / C$$

3.7 Improving Capacity in Cellular Systems

- Methods for improving capacity in cellular systems
 - Cell Splitting: subdividing a congested cell into smaller cells.
 - Sectoring: directional antennas to control the interference and frequency reuse.
 - Zone microcell concept : Distributing the coverage of a cell and extends the cell boundary to hard-toreach place.